Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 5: 13671, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26329829

RESUMO

High threading dislocation (TD) density in GaN-based devices is a long unresolved problem because of the large lattice mismatch between GaN and the substrate, which causes a major obstacle for the further improvement of next-generation high-efficiency solid-state lighting and high-power electronics. Here, we report InGaN/GaN LEDs with ultralow TD density and improved efficiency on a sapphire substrate, on which a near strain-free GaN compliant buffer layer was grown by remote plasma atomic layer deposition. This "compliant" buffer layer is capable of relaxing strain due to the absorption of misfit dislocations in a region within ~10 nm from the interface, leading to a high-quality overlying GaN epilayer with an unusual TD density as low as 2.2 × 10(5) cm(-2). In addition, this GaN compliant buffer layer exhibits excellent uniformity up to a 6" wafer, revealing a promising means to realize large-area GaN hetero-epitaxy for efficient LEDs and high-power transistors.

2.
Nanotechnology ; 26(26): 265702, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26057412

RESUMO

Plasmonic silver nanostructures and a precise ZnO cover layer prepared by capacitively coupled plasma atomic layer deposition (ALD) were exploited to enhance the Raman scattering from nanoscale ultrathin films on a Si substrate. The plasmonic activity was supported by a nanostructured Ag (nano-Ag) layer, and a ZnO cover layer was introduced upon the nano-Ag layer to spectrally tailor the localized surface plasmon resonance to coincide with the laser excitation wavelength. Because of the optimized dielectric environment provided by the precise growth of ZnO cover layer using ALD, the intensity of Raman scattering from nanoscale ultrathin films was significantly enhanced by an additional order of magnitude, leading to the observation of the monoclinic and tetragonal phases in the nanoscale ZrO2 high-K gate dielectric as thin as ∼6 nm on Si substrate. The excellent agreement between the finite-difference time-domain simulation and experimental measurement further confirms the so-called [absolute value]E(->)[absolute value](4) dependence of the surface-enhanced Raman scattering. This technique of plasmonic enhancement of Raman spectroscopy, assisted by the nano-Ag layer and optimized dielectric environment prepared by ALD, can be applied to characterize the structures of ultrathin films in a variety of nanoscale materials and devices, even on a Si substrate with overwhelming Raman background.

3.
ACS Appl Mater Interfaces ; 6(6): 4179-85, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24564803

RESUMO

Plasmonic enhancement of photoluminescence from bulk silicon was achieved by spectrally tailoring coupled localized surface plasmon resonance (LSPR) in the Al2O3 cover/nanostructured platinum (nano-Pt)/Al2O3 spacer/silicon multilayer structures prepared by atomic layer deposition (ALD). Agreement between the simulation and experimental data indicates that the plasmonic activity originates from absorption enhancement due to coupled LSPR. Because of the optimized dielectric environment deposited by ALD around the nano-Pt layer, absorption of the multilayer structure was enhanced by the precise tuning of coupled LSPR to coincide with the excitation wavelength. This accurate plasmonic multilayer structure grown by ALD with high precision, tunability, uniformity, and reproducibility can be further applied in efficient light-emitting devices.

4.
Nanoscale Res Lett ; 6(1): 556, 2011 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-22005048

RESUMO

We report on the characteristics of near-band-edge (NBE) emission and deep-level band from ZnO/Al2O3 and ZnO/ZnO core-shell nanorod arrays (NRAs). Vertically aligned ZnO NRAs were synthesized by an aqueous chemical method, and the Al2O3 and ZnO shell layers were prepared by the highly conformal atomic layer deposition technique. Photoluminescence measurements revealed that the deep-level band was suppressed and the NBE emission was significantly enhanced after the deposition of Al2O3 and ZnO shells, which are attributed to the decrease in oxygen interstitials at the surface and the reduction in surface band bending of ZnO core, respectively. The shift of deep-level emissions from the ZnO/ZnO core-shell NRAs was observed for the first time. Owing to the presence of the ZnO shell layer, the yellow band associated with the oxygen interstitials inside the ZnO core would be prevailed over by the green luminescence, which originates from the recombination of the electrons in the conduction band with the holes trapped by the oxygen vacancies in the ZnO shell.PACS 68.65.Ac; 71.35.-y; 78.45.+h; 78.55.-m; 78.55.Et; 78.67.Hc; 81.16.Be; 85.60.Jb.

5.
Artigo em Inglês | MEDLINE | ID: mdl-21507754

RESUMO

This report describes a system that utilizes a single high-intensity focused ultrasound (HIFU) transducer for both the localization and ablation of arteries with internal diameters of 0.5 and 1.3 mm. In vitro and in vivo tests were performed to demonstrate both the imaging and ablation functionalities of this system. For imaging mode, pulsed acoustic waves (3 cycles for in vitro and 10 cycles for in vivo tests, 2 MPa peak pressure) were emitted from the 2-MHz HIFU transducer, and the backscattered ultrasonic signal was collected by the same transducer to calculate Doppler shifts in the target region. The maximum signal amplitude of the Doppler shift was used to determine the location of the target vessel. The operation mode was then switched to the therapeutic mode and vessel occlusion was successfully produced by high-intensity continuous HIFU waves (12 MPa) for 60 s. The system was then switched back to imaging mode for residual flow to determine the need for a second ablation treatment. The new system might be used to target and occlude unwanted vessels such as vasculature around tumors, and to help with tumor destruction.


Assuntos
Vasos Sanguíneos/diagnóstico por imagem , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Transdutores , Terapia por Ultrassom/instrumentação , Ultrassom/instrumentação , Procedimentos Cirúrgicos Vasculares/instrumentação , Animais , Técnicas de Imagem por Elasticidade/instrumentação , Desenho de Equipamento , Coelhos , Ratos , Terapia por Ultrassom/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...